Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yong-Hong Wen, Kun Zhang, Xue-Mei Li, Sai Bi and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.038 wR factor = 0.098 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The molecule of the title compound, $C_{16}H_{16}N_2O_4$, lies on a crystallographically imposed center of symmetry at the midpoint of the C-C bond of the oxamide unit. An intramolecular C-H···O hydrogen bond forms a six-membered ring, and molecules are linked into ribbons along the *a* axis by N-H···O hydrogen bonds.

N,N'-Bis(3-methoxyphenyl)oxamide

Received 17 July 2006 Accepted 18 July 2006

Comment

In our ongoing studies of oxalamide derivatives, the title compound, (I), was obtained from the reaction of 3-methoxyaniline and oxalyl chloride. Compound (I) has a crystallographically imposed center of symmetry at the midpoint of the $C7-C7^i$ bond [symmetry code: (i): 1-x, -y, -z]. All bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987). The dihedral angle between the benzene ring and the N1/C7/O2/N1ⁱ/C7ⁱ/O2ⁱ plane is 31.3 (1)°. An intramolecular C1-H1B···O2 hydrogen bond forms a sixmembered ring, and molecules are linked into ribbons along the *a* axis (Fig. 2) by N-H···O hydrogen bonds (Table 1). The packing is further stabilized by C-H··· π interactions (Table 1; *Cg*1 is the centroid of the C1-C6 benzene ring).

Experimental

To a solution of 3-methoxyaniline (24.6 g, 0.2 mol) in benzene (70 ml) was added dropwise a solution of oxalyl chloride (6.4 g, 0.05 mol) in benzene (30 ml), and the mixture was stirred at 343 K for 9 h. After cooling to room temperature, water (50 ml) was added to the mixture and the organic phase was washed three times with water to give a solid. Compound (I) was obtained after drying at room temperature for 3 d. Colorless single crystals suitable of (I) for X-ray diffraction study were obtained by slow evaporation of the N,N-dimethyl-formamide solution over a period of one day.

© 2006 International Union of Crystallography All rights reserved

Figure 1

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The suffix A corresponds to symmetry code (1 - x, -v, -z).

Figure 2

Packing of (I), viewed down the b axis, showing the hydrogen-bonded (dashed lines) ribbons.

Crystal data

 $C_{16}H_{16}N_2O_4$ Z = 2 $M_r = 300.31$ $D_r = 1.403 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ a = 5.0776 (5) Å $\mu = 0.10 \text{ mm}^{-1}$ b = 5.3347 (6) Å T = 293 (2) K c = 26.243 (3) Å Block, colorless $\beta = 91.396 (2)^{\circ}$ V = 710.65 (13) Å³

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans Absorption correction: multi-scan

(SADABS; Sheldrick, 1996) $T_{\min} = 0.961, T_{\max} = 0.990$

 $0.39 \times 0.22 \times 0.10 \text{ mm}$

3878 measured reflections 1389 independent reflections 1193 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.018$ $\theta_{\rm max} = 26.0^\circ$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0499P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.1368P]
$vR(F^2) = 0.098$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
389 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
00 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ \AA}^{-3}$
I-atom parameters constrained	

Table 1			
Hydrogen-bond	geometry ((Å,	°).

. .

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
C8-H8B···Cg1 ⁱⁱ 0.96 2.74 3.577 146 N1-H1A···O2 ⁱⁱⁱ 0.86 2.20 2.963 (1) 148 N1-H1A···O2 ⁱ 0.86 2.27 2.681 (1) 109 C1-H1B···O2 0.93 2.42 2.918 (2) 113	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$C8-H8B\cdots Cg1^{ii}$ $N1-H1A\cdots O2^{iii}$ $N1-H1A\cdots O2^{i}$ $C1-H1B\cdots O2$	0.96 0.86 0.86 0.93	2.74 2.20 2.27 2.42	3.577 2.963 (1) 2.681 (1) 2.918 (2)	146 148 109 113

Symmetry codes: (i) -x + 1, -y, -z; (ii) x + 1, y, z; (iii) x - 1, y, z.

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with N-H = 0.86 Å and C-H distances in the range 0.93–0.96 Å, and with $U_{iso}(H) =$ $1.2U_{eq}(C,N)$ and $1.5U_{eq}(methyl C)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (No. 05-2-JC-80) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.